
J .  Fluid Mech. (1995), 001. 293, p p .  321-341 
Copyright 0 1995 Cambridge University Press 

321 

Statistical interpretation of the turbulent 
dissipation rate in wall-bounded flows 

BY J. JOVANOVIC,  Q.-Y.  Y E  AND F. DURST 
Lehrstuhl f i r  Stromungsmechanik, Universitat Erlangen-Nurnberg, Cauerstrasse 4, 

D-91058 Erlangen, Germany 

(Received 1 August 1994 and in revised form 1 February 1995) 

Statistical analysis was performed for interpreting the dissipation correlations in 
turbulent wall-bounded flows. The fundamental issues related to the formulation 
of the closure assumptions are discussed. Using the two-point correlation tech- 
nique, a distinction is made between the homogeneous and inhomogeneous parts 
of the dissipation tensor. It is shown that the inhomogeneous part contributes 
half of the dissipation rate at the wall and vanishes remote from the wall re- 
gion. The structure of an analytically derived equation was analysed utilizing the 
results of direct numerical simulations of turbulent channel flow at low Reynolds 
number. 

1. Introduction 
In 1945, Chou (1945) outlined a general concept for the closure of the Reynolds 

equations for turbulent flow. He identified three different types of correlations involved 
in the equations for the moments : higher-order velocity correlations, velocity/pressure 
gradient correlations and dissipation correlations. Inspired by the work of von 
Karman and Lin, Chou used the two-point correlation technique together with the 
assumption of local homogeneity to develop a systematic and consistent statistical 
procedure for the closure of velocity/pressure gradient and dissipation correlations. 
The successive substitution method was proposed for the treatment of the higher-order 
velocity correlations by solving the dynamic equations for the moments throughout 
the iteration. 

Rotta (1951) followed the work of Chou and deduced explicit values for the empir- 
ical constants by referring to the experimental data. He used these data to predict the 
entire non-vanishing components of the Reynolds stress tensor in a two-dimensional 
channel flow with reasonable success. It must be stressed, however, that Rotta 
modified Chou’s original theory and used simplified forms for the velocity/pressure 
gradient and dissipation correlations. 

The closure for the equations that describe second-order moments of turbulent 
velocity fluctuations was also considered by Davydov (1961). He incorporated the 
isotropy assumptions for the dissipation rate correlations and formulated approxi- 
mate relationships for the pressure-strain terms and correlations encountered in the 
equations for the third-order moments. In addition to the improvements mentioned 
above, Davydov defined a transport equation for the turbulent dissipation rate. For 
the two dominant terms of this equation, he provided a closure based on the laws 
of decay of homogeneous isotropic turbulence. The closure procedure proposed by 
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Davydov requires the integration of 23 differential equations and determination of 
four empirical constants. 

In the late 1960s and the beginning of the 1970s, a group of physicists at the 
Los Alamos Research Laboratories directed by Harlow (e.g. Harlow & Welch 1965; 
Harlow & Nakayama 1968; Harlow & Hirt 1969; Hirt 1969; Daly & Harlow 1970) 
developed several efficient numerical techniques for fluid flow applications. They 
implemented the modified turbulence models of Rotta and Davydov in numeri- 
cal computation schemes and obtained predictions of simple flow configurations. 
Parametric studies permitted optimization of the empirical constants by matching 
computational results to the available experimental data. 

Further refining and testing of turbulence closure schemes were carried out by 
Hanjalik & Launder (1972, 1976). They extensively studied thin shear flows utilizing 
Davydov’s formulation for the turbulence dissipation rate and modified Rotta’s sug- 
gestion for the pressure-strain correlations. A simplified set of equations was solved 
for the prediction of various wall flows using the equations for the shear stress, tur- 
bulence kinetic energy and dissipation rate. In a later publication, they also included 
low Reynolds number effects, which are of significant importance for the treatment 
of the near-wall region. 

The first numerical evaluations employing a complete treatment for all of the 
non-vanishing components of the correlation tensor were realized by Launder, 
Reece & Rodi (1975) exactly 30 years after the appearance of the original pub- 
lication of Chou. The turbulence closure was a mixture of Chou’s original ideas 
and the later work of Rotta, Davydov, Harlow, and Hanjalik. Satisfactory re- 
sults were obtained by comparing predictions against available experimental data in 
some specific cases of homogeneous, free shear flows and turbulent wall boundary 
layers. 

A significant intellectual contribution to the formulation of the turbulence closure 
was made by Lumley (1978). He formulated a novel approach for handling the 
dynamic equations for the moments based on the analogy between the behaviour of 
turbulent flows and viscoelastic fluids. Lumley (1992) explicitly underlined the need 
for an accurate description of the processes related to the dissipation of kinetic energy 
of turbulence as a most crucial item for reliable flow predictions. 

With the advances in the development of direct simulation techniques for turbulence 
investigations, it is now possible to test various mathematical theories of turbulence 
directly against the simulation databases. These databases contain complete three- 
dimensional random flow fields from which it is possible to extract any information 
that is required. Thus, we can avoid putting effort into handling large systems of 
partial differential equations and concentrate attention on checking physical ideas and 
fundamental assumptions that are currently used in the development of turbulence 
closure. 

The objective of this paper is to analyse in great detail the structure of the equations 
that govern the turbulent dissipation rate. The two-point correlation technique first 
introduced by Chou (1945) and subsequently improved by Kolovandin & Vatutin 
(1969, 1972) forms the bases of our theoretical analysis. The result of this analysis 
is an equation for the homogeneous part of the dissipation which relates to the total 
dissipation by a simple algebraic relationship. The derived equation was analysed 
using the results of direct numerical simulations of turbulent channel flow. By con- 
sidering the equation for the dissipation rate, additional arguments are supplemented 
that demonstrate the obvious advantages of the derived equation for application in 
wall-bounded flows. 
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2. Basic equations for the moments 
Starting from the Navier-Stokes and the continuity equations and introducing the 

conventional method of separating the instantaneous velocity and pressure into mean 
and fluctuating components, one obtains the equations for the turbulent fluctuations 
(see Hinze 1975): 

- +vAxui, (2.1) - + + k - + u k - + - - - - - - -  
at axk dxk dxk d X k  P dxi 

aui aui aui auiuk a= 

aui 
axi  
- = 0. 

In the above equations, the summation convention is applied over all double indices, 
and A, corresponds to the Laplace operator (A, = d 2 / d x $ x l )  with respect to the 
variable x .  

By systematic manipulation of (2.1) and (2.2), it is possible to obtain equations 
for the moments of arbitrary order (see, for example, Hinze 1975). The equations 
defining the second-order moments are 

(1) (11) (111) 

In the equations for the second-order moments, one can identify three different types 
of unknown correlations : higher-order velocity correlations ( I )  ; velocity/pressure 
gradient correlations ( I I )  ; dissipation correlations (111). 

These correlations must be expressed in terms of known quantities in order to close 
the resultant system of equations for the moments. 

In this paper, we consider the terms representing the dissipation of turbulence: 

that appear in (2.3). The procedure for treating the dissipation correlations is based on 
the application of the two-point correlation technique that was originally developed 
by Chou (1945) and subsequently refined by Kolovandin & Vatutin (1972). 

3. Application of the two-point correlation technique for interpreting 
dissipation correlations 

In order to separate the effects of local character from the large-scale fluid motions, 
we first define a new coordinate system relative to two arbitrary points A and B as 
shown in figure 1 : 
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FIGURE 1. Coordinate system used to define the two-point correlation functions. 

The partial differential operators at points A and B as functions of ( X k ) A B  and <k  are 
given as follows (see Hinze 1975): 

From the last two equations, one obtains 

If we now apply the operator (3.5) to the product of velocity fluctuations at two 
points ( u j ) A ( u j ) B ,  we obtain 

Since (uJA can be treated as constant with respect to a derivative at point B and 
( u ~ ) ~  constant with respect to a derivative at point A, (3.6) can be transformed, after 
averaging has been performed, to the following form : 

Multiplying (3.7) by v and taking the limit when A -+ B yields 

E . .  - v-- - - ivA,ii& -v(At$)~,  
I’ - a x k  a x k  - - 

inhomogeneous homogeneous 
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where the prime indicates a value of the function at the point B and the subscript 
represents the zero separation 
(1972). 

= 0. Equation (3.8) is due to Kolovandin & Vatutin 

The derived form of eij possesses the following important properties : 
(i) According to (3.8), the tensor eij is composed of an inhomogeneous part 

ivA,uiuj and a homogeneous part -v(Ar$)o. 
(ii) Since we derived (3.8) only from kinematic considerations and without reference 

to the laws of conservation, it is not appropriate to relate the inhomogeneous part of 
eij to the viscous diffusion. 

(iii) The tensor eij is symmetrical and from (3.8) it follows that 

The above result is also a peculiarity of the two-point velocity correlation of second 
rank in homogeneous turbulence. 

(iv) The homogeneous part of eij depends on viscosity and the curvature of the 
two-point velocity correlation of second rank near the origin. Hence this part of 
eij can be expressed in terms of the viscosity, second-order statistics of the velocity 
field and the tensor of the turbulence micro-scale (see Kolovandin & Vatutin 1972; 
Jovanovii, Ye & Durst 1992). 

(v) By expanding the instantaneous velocities in a Taylor series near the wall, 
it is possible to show that the inhomogeneous part of eij is especially impor- 
tant in wall-bounded flows. This part contributes to half of the dissipation rate 
f :  

(3.10) 

at the wall and vanishes remote from the wall region. It also increases the anisotropy 
between the components of the dissipation tensor. Hence the inhomogeneous part 
of (3.8) plays an important role in the partition of eij into its components at the 
wall. We shall show later that the data obtained from direct numerical simulations 
of wall-bounded flows confirm these results (see figure 2) .  In the context discussed 
above we may note that the total average turbulent dissipation rate T is defined 
by 

(3.11) 

(vi) Using (3.8), we can also explain the difficulties in direct treatment of the 
equation for the dissipation of turbulence kinetic energy. Starting from (3.8), we can 
write 

Dfij 
-- - ivA,EUiuj - ~ E ( A ~ u i u ) ) ~ .  
Dt  

(3.12) 

The substantial derivatives of uiuj and (Apiu;)0 in (3.12) can be replaced by (2.3) 
and (4.3) to show that we must keep the terms that are fourth-order derivatives in uiui 
to retain the inhomogeneous part of qj. This is not practical from the viewpoint of 
theory and is also inconvenient for the numerical analysis. Therefore, operation upon 
the equation for dissipation eij is extremely difficult. In the sections that follow, we 
shall elaborate further on this important point. 
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FIGURE 2. Distributions of 6, homogeneous and inhomogeneous contributions: 
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€+.---- , h omogeneous part of (6.1); - - - - - - -, inhomogeneous part of (6.1). , ,  

4. Dynamic equations for the two-point velocity correlation 
Since the inhomogeneous part of eij can be explicitly related to the statistics of 

the velocity field, we need to consider only the homogeneous part of the turbulence 
dissipation. To achieve this task, we start from the equation for the instantaneous 
fluctuations, (2.1), and, referencing it to the points A and B, we obtain the following 
equation, after some manipulations (see Hinze 1975) : 

Utilizing (3.3), (3.4) and (3.5) derived for the relative coordinate system given in 
figure 1, and by applying an averaging procedure with respect to time, (4.1) reads 

a 
- at ( U i ) A ( U j ) B  + ( U j ) B ( U k ) A  (”) a x k  A + ( U i ) A ( U k ) B  (”i> a x k  B + [( U k ) A  

(4.2) 

By decomposing the velocity/pressure gradient correlations in a similar way as 
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described in $ 3  and setting g = 0, it is straightforward to show that (4.2) coincides 
with (2.3). 

To permit the explicit evaluation of the second term in (3.8), we apply the operator 
-vAt to (4.2) and take the limit A + B to obtain 

+ [.[ ($$ - &q)] + TAx(A&$)o V 2  + 2v2(AtAt$)o = 0. 
P 0 

(4.3) 

Using the two-point correlation technique, kinematic constraints and the con- 
tinuity equation, the components of the dissipation tensor, (3.Q can be analyti- 
cally interpreted in terms of its trace E,, and the second-order velocity correlation 
iipj (see Chou 1945; Kolovandin & Vatutin 1972, Jovanovik et al. 1992). There- 
fore, it is of interest to consider only the contracted form of (4.3), which reads as 
follows : 

+ 2v2(AtAtU,u:)0 = 0. (4.4) 

In the Appendix, we have provided the derivation of (4.4) starting from the equation 
for the turbulent dissipation rate. 

5. Physical simplification of the dynamic equation for the homogeneous 
part of the turbulent dissipation rate 

Equation (4.4) for the homogeneous part of the turbulent dissipation rate is 
composed of the derivatives of two-point correlation functions. Since this equation 
involves velocity and pressure/velocity correlations that are of diverse nature, further 
simplifications are desirable. 

The formalism usually adopted in the treatment (4.4) is to perform an order 
of magnitude analysis of each individual term and to disregard terms that are 
negligible. However, such an estimation does not recognize the statistical nature 
of turbulence fluctuations. In 1945, Chou proposed an analytical technique for the 
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treatment of the equations that define the dissipation correlations. He introduced 
the assumption of local homogeneity for the small-scale structure of turbulence 
which permitted him to make radical simplifications to (4.4). The concept of local 
homogeneity is statistical and utilizes as an approximation the relationships for the 
derivatives of the two-point correlation functions for zero separation (5  = 0) that 
are valid in homogeneous turbulence. We shall follow this approach in defining 
the approximate equation that describes the homogeneous part of the turbulent 
dissipation rate. 

To approximate the terms in (4.4) that involve differentiation with respect to the 
variable [ following the suggestion of Chou (1945), we assume that the small-scale 
structure of turbulence between two closely separated points A and B is locally ho- 
mogeneous. Exploring this assumption, we can utilize the properties of homogeneous 
turbulence for two-point correlations (see Hinze 1975) : 

differentiate (5.la,b,c) with respect to <, and set A + B to show the following: 

= - (At&=) 0 , 

(5 .1~)  
(5.lb) 

(5.1~) 

(5.2b) 

(5.2~) 

(5.2d) 

We shall now complement the derivations given above for the terms of equation 
(4.4) that involve derivatives of two-point pressure/velocity correlations. Starting 
from (3.3) and (3.4), we can write 

Applying the differential operator (5.3) to the correlations ( P ) A ( u , ) B  and ( u , ) A ( P ) B ,  

and utilizing the conditions of invariance (5.lb) together with the continuity equation 
(2.2) results in 

(5.4) 

If we apply the Laplace operator At to (5.4) and take the limit A + B,  the result is 
as follows: 
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Using (3.9) and the approximate relationships (5.2a,b,c,d) and ( 5 4 ,  we can simplify 
(4.4) to 

This simplified equation is identical with that obtained by Kolovandin & Vatutin 
(1972) and very similar to the equation for the vorticity decay analysed by Chou 
(1945). In his initial work, Chou ignored the terms 

V 2  

2 
a US -- 2i@&Ax- + and -Ax(At%)o, 

4 [ axk 

that appear in (5.6) on the grounds that they are negligible at high Reynolds numbers 
and away from the near-wall region. 

6. Validation of the derived equations using the results of direct 
numerical simulations 

In this section, we shall utilize the data of Mansour, Kim & Moin (1987) together 
with the results of Gilbert & Kleiser (1991) with the following objectives: (i) to 
decompose the inhomogeneous and homogeneous contributions to the turbulent 
dissipation rate; (ii) to validate the assumption of local homogeneity across the 
entire flow field and, in particular, near the wail; (iii) to analyse the structure of the 
approximate equation for the homogeneous part of c and the contributions of each 
individual term. The test data were obtained from direct numerical simulation of a 
fully developed turbulent channel flow at low Reynolds numbers. 

6.1. Decomposition of the turbulent dissipation rate 
From the analysis presented in Q 3, the turbulent dissipation rate can be decomposed 
into inhomogeneous and homogeneous parts : 

E = $vAxq2 -v(Ae%)o. -- 
inhomogeneous homogeneous 

In figure 2 ,  we have plotted both of these contributions and their sum using the data 
of Mansour et al. (1987). The data are presented versus normalized distance ( y + )  
from the wall. Normalization was performed with respect to the inner variables 

where u, and v are the wail shear velocity and the kinematic viscosity of the flow 
medium, respectively. The profiles of the turbulence intensities from the study of 
Kim, Moin & Moser (1987) were differentiated to obtain the inhomogeneous part of 
the dissipation rate. The homogeneous contribution was obtained utilizing the data 
mentioned above and the E profile. 

The data in figure 2 imply that the homogeneous and inhomogeneous parts 
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contribute equally to c at the wall. The inhomogeneous part increases the dissipation 
rate in the region of the viscous sublayer and decreases it in the buffer region. Hence, 
the steep rise of dissipation rate close to the wall and the secondary peak in its 
distribution in the buffer region can be explained by the first term of (6.1). This term 
asymptotically disappears in the logarithmic region. The profile of the homogeneous 
part of c has an increasing trend in the viscous sublayer, reaches a maximum in the 
buffer region and decreases thereafter away from the wall region. 

In a recent study, Bradshaw & Perot (1993) compared the turbulent dissipation 
rate c and the true rate of dissipation T in a channel flow using the results of direct 
numerical simulations. The difference between c and T was found to be less than 2% 
everywhere across the flow field. In contrast to these findings, there is a substantial 
difference between the homogeneous and inhomogeneous parts of turbulent dissipa- 
tion rate in the near-wall region. Figure 3 shows contributions to the inhomogeneous 
part of e arising from different intensity components. The variations of streamwise 
component intensity in the viscous sublayer and the buffer region accounts primarily 
for the important role of the inhomogeneous part o f f  near the wall. 

6.2. Locally homogeneous turbulence 
In $5 ,  we have explored the assumption of local homogeneity in order to simplify 
the derived equations. Hence it is appropriate to validate this assumption against 
the simulation databases. In this subsection, we shall test the applicability of these 
fundamental ideas using the data of Gilbert & Kleiser (1991). 

From the direct numerical simulations, data are currently available only for the 
terms of the dissipation equation. Consequently, we used the relationships derived 
in the Appendix to relate these terms to the properties of two-point correlation 
functions. In this way, we provided the basis for checking the relations used in $ 5 for 
the derivation of the simplified equation that governs the homogeneous part of the 
turbulent dissipation rate. 

In the presentations that follow, all terms of the dissipation equation are normalized 
by the wall variable 

and are plotted against the normalized distance from the wall. 
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- - - - - - - , DNS data; 0, equation (6.4). 
FIGURE 4. Distributions of P z  and the approximation given by (6.4). 

6.2.1. Two-point velocity correlations of the second rank 

P,' of E can be written as 
Using the two-point correlation technique (see Appendix), the gradient production 

If the assumption of local homogeneity is fulfilled 

then P,' can be approximated as follows: 

Figure 4 shows the comparison between the data deduced from the simulated flow 
field and the approximation given by (6.4). In the viscous sublayer and the buffer 
region (y+ < 35), the assumption of local homogeneity, (6.3), is not satisfied. Away 
from the near-wall region (y+ > 35), both terms plotted in figure 4 are approximately 
equal and decrease towards zero in the logarithmic region. The assumption of local 
homogeneity, (6.3), is satisfied in the part of the flow that corresponds to the local 
Reynolds number: 

where 1 is the Taylor microscale. 

6.2.2. Two-point pressurelvelocity correlations 
In order to determine the applicability of the derived approximations (5.2d) and 

( 5 . 9 ,  we also analysed the two-point pressure/velocity correlations. The pressure 



332 J .  JouanoviC, X - Q .  Ye and F. Durst 

0.01 

-0.01 
0 10 20 30 

y’ 
FIGURE 5. Distributions of Il, and the approximation given by (6.8). 

- - - - - - - , DNS data; 0, equation (6.8). 

term n, of the E equation can be expressed as follows (see also Appendix): 

If the flow is locally homogeneous 

then n, transforms as 
v a  n, 2: --- Ax@. 

2p axi 
The form of (6.8) suggests that the derived approximation for Il, is not closed. 

Figure 5 shows a comparison between the data for n, obtained from direct 
numerical simulations and the derived approximation (6.8). These data suggest that 
the assumption of local homogeneity is not applicable in the region of the viscous 
sublayer (yf d 6 )  and leads to unrealistic data for the pressure term at the wall. The 
approximate expression (6.8) for Il, and the numerical data show that derivatives of 
two-point pressure/velocity correlations are virtually negligible away from the wall 
region. 

6.2.3. Two-point velocity correlations of the third rank 
The concept of local homogeneity was also tested for the terms that contain 

derivatives of two-point velocity correlations of the third rank. Using the two-point 
correlation technique of $ 3 ,  it is possible to show that it is necessary to consider the 
following correlations : 
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Since these correlations are not yet available from the simulation databases, we 
analysed the applicability of the ideas mentioned above for the interpretation of the 
so-called transport term T, : 

(6.10) 

of the e equation. 

of the third rank as follows: 
The transport term T, can be interpreted in terms of two-point velocity correlations 

Since 

(6.11) 

(6.12~) 

(6.12b) 

and assuming that the fine-scale structure of turbulence is locally homogeneous : 

( A t U i U k U i ) o  N - ( A t U i U i U ; ) o ,  (6.13~) 

(A t  UiUiU; )o  N - ( A t U k U I U i ) O ,  (6.13 b)  

it follows that 

( A ~ U ~ U ~ U ; ) O  N ( A r U k U i U : ) o  2: 0. (6.14) 
Utilizing the derivation given above reduces T, to the form 

(6.15) 

We note that the deduced approximation (6.15) for T, is not closed. 
The simulated data for T, and the derived approximation (6.15) are shown in 

figure 6(a,b). Close to the wall ( y+  < 20), the degree of agreement is slightly better 
in comparison with the data displayed in figures 4 and 5 .  However, the numerical 
data shown in figure 6(b) tend towards the derived approximation (6.15) for the 
transport term slowly, indicating that the assumption of local homogeneity is not 
strictly satisfied even far away from the near-wall region (y+ 2 100). 

The behaviour of the transport term T, relative to the imbalance in the budget 
of the E equation is shown in figure 7 on an expanded scale. In the outer part of 
the flow the imbalance in the dissipation budget (relative to the destruction term Y) 
continuously increases and reaches a maximum value of about 17% at the channel 
centreline. The data in figure 7 also suggest that the transport term T, and the 
imbalance in the budget of the 6 equation are of the same order near the channel 
centreline. Therefore, we are unable to justify the applicability of the assumption of 
local homogeneity for the terms of (4.4) that involves two-point velocity correlations 
of the third rank. More realistic data are therefore required to clarify this important 
issue precisely. In the meantime, it is safe to retain the term 

(6.16) 

which was disregarded in $ 5  by assuming that small-scale structure of turbulence is 
locally homogeneous. 
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FIGURE 6. Distributions of T, and the approximation given by (6.15). (a) Near-wall region; 

(b)  outer flow region. - - - - - - -, DNS data; 0, equation (6.15). 

6.3. The structure of the approximate equation for  -v(At%)o 

In order to study the balance of the approximate equation that governs the homo- 
geneous part of E ,  we shall first write the revised form of (5.6) by retaining the 
derivatives of two-point velocity correlations of third rank : 

+ iv2Ax(A5%)o + ~ V ~ ( A ~ A ~ S ) ~  N 0. (6.17) 
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Y' 

FIGURE 8. Sum of small terms P,' and 17, obtained from the turbulent channel flow data 
of Gilbert & Kleiser (1991). 

By including the term (6.16) we ensured that the balance of (6.17) is satisfied far away 
from the wall. 

The analysis of the simulated data, in general, contradicts the applicability of 
the assumption of local homogeneity in the near-wall region. However, the terms 
considered in the previous section, P,' and n, (as well as their sum), are small, as 
shown in figure 8.  Therefore, the error in the approximations introduced for these 
terms in $ 5  might not be large enough to affect the balance of (6.17) significantly 
close to the wall. 

To form the balance of (6.17), the terms of the E equation were re-evaluated from 
the simulated data using derivations given in the Appendix. Figure 9(a,b) shows the 
budget of (6.17) computed from the data of Mansour et al. (1987). Away from the 
near-wall region (y+ 2 20), the balance of (6.17) is satisfied to a comparable degree 
of accuracy as for the E equation. The imbalance in the data increases as the wall is 
approached and reaches its maximum at the wall. In the region (2 < y+ < 20), the 
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FIGURE 9. Terms in the budget of (6.17) deduced from the simulated data of Mansour et al. 

- - - - - - - , D,; 0 , -Y;  0, sum of all terms; ( b )  budget of (6.17): A, TI = - 2 ~ ( A ~ ~ ) ~ d U , / a x k ;  
(1987). (a) Budget of E equation: A, PJ; 0, P:; ----~ , P,3; * , P,4; ___ 9 T€ + fl,; 

, T2 = -:V[2u,ukAxaUs/aXk + ( A X U k ) ( a / d X k ) m ] ;  0, T3 = - 2 v [ ( a 2 / a 5 , a 5 k ) ~ ] o a U k / a X ~ ;  
*, T4 = - i V ( a / a X k ) [ ( A t u , u , u : ) o  + (Atu,u:Ul)o] + V [ A \ , ( a / a & ) ( U , U ; U i  - U s U k U : ) ] o ;  -------, 

- -  

TS = ~ v 2 A x ( A t ~ ) o ;  0,  T6 = 2 v 2 ( A t _ A t a ) o ;  0, sum of all terms. 

relative imbalance in the data is less than 10% of the destruction term ~ V ~ ( A ~ A ~ % ) ~ .  

The imbalance shown in figure 9(b) in the region adjacent to the wall ( y+  < 2) 
is not a matter of serious concern, since the solution of (6.17) can be deduced 
using kinematic considerations only. Using the two-point correlation technique, the 
authors have shown (Jovanovii et al. 1992) that the turbulent dissipation rate can be 
interpreted in terms of the Taylor microscale as follows: 

(6.18) 

Expanding the instantaneous velocity field in a Taylor series around the wall values 
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Gilbert & Kleiser (1991). (a) Budget of e equation: A, P,' + P:; ----- 9 P,3; 

, T2 = -av[2U,UkAXdUs/axk + (A,Uk)(a/dxk)u,]; *, T4 = -~v(a/axk)[(A.,u,uku:)o - - -  
+(A<u,u$;)o] + v [ A C ( ~ / ~ ~ ~ ) ( U , U : U I  - u , u ~ u : ) ] o ;  - - - - - - - - , T~ = ; V ~ A . ( A . , ~ ) ~ ;  0,  

T6 = 2 v 2 ( A < A g g ) o ;  0, sum of all terms. 

(x2 = 0), one confirms that ;Z is a linear function of the distance from the wall: 

;Z = a x 2 .  (6.19) 

Therefore, owing to the explicit form of (6.19), it is possible to avoid integration of 
(6.17) in the vicinity of the wall. 

We also used the data of Gilbert & Kleiser (1991) to validate the balance of (6.17). 
The results given in figure 10 (a,b) confirm that the derived equation holds away from 
the near-wall region. The behaviour of the data close to the wall is less encouraging 
compared with the data shown in figure 9 (b ) .  
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7. Discussion 
It is of interest to analyse the relevance of the data presented to the development 

of turbulence closure techniques and methods for the interpretation of experimental 
data. In what follows, we shall illustrate the impact of the deduced results on the 
determination of the turbulent dissipation rate close to the wall. 

J .  JovanoviC, Y-Q. Ye and F. Durst 

7.1. Implications for  turbulence closure 
As representative data that illustrate current trends in developments of turbulence 
closure, we shall analyse the predictions of turbulent channel flow at low Reynolds 
number of Hanjalib et al. (1992). The data were obtained using a state of the art 
second-moment closure with the equation for c as follows : 

where 

(7.2) 

k = i m  s 9  f, = 1 -  ex^[-(^%,)^]}, 
&I = k2Ive, 2 = - 2 ~ ( a k l ’ ~ / a ~ ~ ) ~ ,  
C, = 0.18, 
Ce2 = 1.92, 

C,1 = 1.44, 
Ce3 = 0.5. 

The first term on the right-hand side of (7.1) approximates the production by the 
mean velocity gradient (P:) and the mixed production (P:) of the dissipation equation 
(A4). The firm analytical proof for the closure of these terms (for the homogeneous 
parts) is given in the paper by Chou (1945). 

The second term represents the difference of the turbulent production (P,“) and 
viscous destruction (Y), the two dominant terms in the balance of the dissipation 
equation. Following a practice first introduced by Davydov (1961), these terms are 
exclusively determined from the laws of the decay of grid turbulence. As shown by 
Hanjalib & Launder (1976), the closure deduced from grid turbulence requires further 
semi-empirical modifications for near-wall applications. 

The third term is assigned as an approximation for the gradient production (P:) 
of the dissipation equation. The fourth term accounts for the diffusive transport 
(T,) of c. The adopted closure for this term is analogous to the form used for the 
interpretation of the similar term in the equation for kinetic energy of turbulence. 
The last term is the viscous diffusion. 

Lumley (1978) and the follow-up contributions (e.g. Tselepidakis 1991; Rodi & 
Mansour 1993; Kessler 1993) to models for the dissipation rate equation would 
argue that the modern models are for the entire right-hand side of (A4) and not the 
individual terms in the dissipation rate equation. 

The predicted profile of e obtained from (7.1) is displayed in figure 11 together 
with the results of similar calculations from the study of Mansour, Kim & Moin 
(1989). The latter data were obtained by solving the simplified form of (7.1) taking 
Ce3 = 0. Note that the data in figure 11 correspond to flow conditions identical to 
Kim et al. (1987). 

The predicted data in figure 11 resemble the shape of the homogeneous part of 
E. across the entire flow. This conclusion holds particularly for the profile obtained 
from the simplified form of (7.1) with CE3 = 0. The e profiles are smooth, with no 
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FIGURE 11. Computed distributions of E across the channel. ~ , Eh Mansour et al. (1987); 

____ , Hanjalik et al. (1992); - - - - - - - , Mansour et al. (1989). 

evidence of a secondary peak close to the wall. Therefore, the predicted data from 
figure 11 imply that current procedures for  the determination of e are able to reproduce 
the homogeneous part of the turbulent dissipation rate. This conclusion inferred from 
figure 11 is in agreement with the results of the analysis carried out in 9 3 and the 
data shown in figure 11. 

Without considering the closure of (6.17) in detail, from the data shown in figure 
11 and the analytical results in $63 and 5, a suitable form of equations for the 
determination of f immediately emerges. Equation (6.1) can be written in the form 

(7.3) 

By comparing (6.17) and (7.1) and taking into account the data shown in figure 11, 
one obtains the equation for the homogeneous part of E :  

f = i v A x k  + f h .  

where 

(7.5) 

In formulating (7.4), we neglected the terms 

(7-6) -1 4 [ 2j-ij-A s k x a x k  & +(Axuk)&%] 

of (6.17), since these are very small in wall-bounded flows. We also ignored the term 

of (7.1), since the formulated closure for this term is not very reliable. There is 
no firm theoretical justification for the form suggested, which is quadratic in the 
second derivative of the mean velocity. The closure for this term has additional 
shortcomings: (i) the predicted magnitude of P,' is significantly higher than numerical 
data; (ii) while the numerical results indicate that P,' changes sign in the near-wall 
region, the closure approximation implies that this term is always positive; (iii) the 
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FIGURE 12. Comparison of the turbulent dissipation rate from Mansour et al. (1987) and the 

numerical predictions of (7.3) and (7.4). ~ , (7.3) and (7.4); 0, DNS data. 

numerical data and the results in $ 6  show that P,' is small and has no effect on 
the budget of the homogeneous part of e even very close to the wall. We have 
neglected the term P,' entirely in formulating the modified equations (7.3) and (7.4) 
for prediction of the turbulent dissipation rate in wall-bounded flows. The other 
terms in (7.4) are clearly analogous to the corresponding terms of (6.17). In view 
of the results presented in $6, the transport term in (7.4) may be also interpreted 
statistically as a measure of the departure from the local homogeneity of turbulence at 
small scales. 

Equations (7.3) and (7.4) were integrated numerically by Hanjalik & Jakirlik (1993) 
using the mean velocity, kinetic energy of turbulence and shear stress profiles from 
the simulated data (Kim et al. 1987). The boundary conditions used were 

v a2k eh = -- 
2 ax;, 

at the wall and 

(7.9) 

at the channel centreline. Figure 12 shows the predictions of E against the profile 
deduced from the simulated flow field. The degree of agreement achieved demonstrates 
the necessity of including the inhomogeneous part of E for obtaining improved data 
predictions in the region close to the wall. 

7.2. Analysis of measurements of the turbulent dissipation rate 
In connection with the issues discussed above, we shall analyse turbulence measure- 
ments in a fully developed pipe flow from Laufer (1953). In the past, his results were 
used to support the closure for the E equation. 

Apart from turbulence intensities, Laufer also measured the distribution of e 
in the near-wall region. The energy dissipation rate was inferred from hot-wire 
measurements of the velocity derivatives. For this purpose, Laufer applied the 
Taylor hypothesis to determine derivatives in the streamwise direction and isotropic 
relationships to estimate derivatives of radial and tangential velocity components. 



Turbulent dissipation rate 341 

0.4 

0.3 

E+ 0.2 

0.1 

0 

&+ 

20 40 60 80 

y' 

FIGURE 13. Dissipation rate measurements in pipe flow from Laufer (1953). (a) Original data 
0 (and corrections) (- ) introduced by Townsend (1976); ( b )  0, re-evaluated data using the 
inhomogeneous term of (6.1); ~ , original data; - - - - - - -, corrected data. 

Only two of the nine terms of (3.10) were measured directly by the application of the 
two-point correlation technique. The derivatives of the streamwise velocity component 
in the radial and tangential directions were obtained from the slope of the straight 
line of the plot of the cross-correlation coefficient measured by the two separated 
hot-wire probes versus the separation distance squared. Figure 13(a) shows Laufer's 
original data together with corrections introduced by Townsend (1976) to bring these 
results into accordance with the measured slopes of the turbulence intensities in the 
viscous sublayer. 

On examining the measurement procedure used by Laufer, it is more appropriate 
to assign his original data to the homogeneous part of the dissipation rate. As 
figure 13(b) shows, only marginal correction of the original data is required to bring 
these data into agreement with the measured profiles of turbulence intensities close 
to the wall. The total dissipation rate E determined from these data using the 
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inhomogeneous part of (6.1) also exhibits a similar shape near the wall to the profile 
shown in figure 2 obtained from direct numerical simulation. Note that the local 
peak in the e distribution close to the wall is also reproduced from the experimental 
data. 

8. Conclusions 
Statistical analysis based on the two-point correlation technique shows that the 

turbulent dissipation rate can be decomposed into homogeneous and inhomogeneous 
parts. The inhomogeneous part is especially important in wall-bounded flows, since 
it contributes half of the dissipation rate at the wall. 

Away from the wall, the derivatives of two-point velocity correlations of second 
rank and the derivatives of two-point pressure/velocity correlations that contribute 
to the balance of the equation for the homogeneous part of e are consistent with 
the local homogeneity assumption. However, the same conclusion does not hold 
for the derivatives of two-point velocity correlations of third rank. For the deriva- 
tives of triple correlations, the local homogeneity assumption does not seem to 
be applicable across the entire flow. The analysed data also show that the con- 
cept of locally homogeneous turbulence does not hold in the near-wall region. 
Using the simulated data of turbulent channel flow, it has been shown that, in 
spite of all deficiencies mentioned above, the approximate equation (6.17) for the 
homogeneous part of c balances the data reasonably well across the entire flow 
field. 

The comparisons of the predicted profiles of e for turbulent channel flow with 
simulated data imply that current prediction procedures are able to reproduce the 
homogeneous part of E. Simple modifications of existing closures for the e equation 
were proposed. The predictions of the modified equations agree favourably with the 
data of direct numerical simulations. 

We analysed Laufer’s (1953) measurements of the turbulent dissipation rate close to 
the wall. By adding the inhomogeneous part of E to the measured data, the behaviour 
of the dissipation rate was obtained, resembling the corresponding profile obtained 
from direct numerical simulations. The re-evaluated distribution of e also shows a 
secondary peak close to the wall. 

The authors are grateful to Dr R. Kessler of DLR-Gottingen for providing the 
direct simulation data for turbulent channel flow and to Mr Mark Benak who 
undertook, as many times before, refinement of the text. We gratefully acknowl- 
edge the support (Jo 240/1-1) given to us by the Deutsche Forschungsgemeinschaft 
(DFG). 

Appendix A. Application of the two-point correlation technique for 
interpreting the equation for the dissipation rate 

defines the trace e : 
We shall now analyse the advantages of (4.4) over the corresponding equation that 

aui aui 
ax/( axk 

e = v-- 

of the dissipation tensor eij. 
To derive the equation for the dissipation rate, 6, we first differentiate (2.1) for the 
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instantaneous fluctuation with d/axr  to obtain 

a aui auk aui a Z u i  auk au, a2ui 
at ax, ax, axk axkax, ax, axk axkax, 
-- +--+uk- + - - + + k -  

a 
a X k a X l  pax iax,  ax, + v -AXui. (A 1)  

1 a2p 
(ukui - m) = 

a2 +- 

Multiplying the above equation by 2vaui/ax, and using the mass conservation law 
results in the following equation: 

a aui aui aui aui auk a aui aui aui auk au, 
at axr axl aXk ax, axr axk ax, ax, ax, ax, aXk - v-- +2v--- + uk-v-- +2v--- 

2v aui a2p 2aui au. 
p ax, axiax, ax, ax, - - +2v -Ax-. 

Using the following transformations : 

and averaging (A2), we obtain the equation for determining the dissipation rate 6: 

P I  PI c31 151 

To gain insight into the significance of the various terms and into the structure of 
the dissipation equation, we shall apply the two-point correlation technique which 
was already discussed in $3 .  The individual terms of (A4) read as follows: 

Term 1 

ae a42 a - 
at 4 at at 
- = - A x - - -  - v - ( A ~ u ~ u : ) ~ ,  

Term 2 
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Term 3 

Term 4 

Term 5 

Terms 6 and 7 

Term 9 

Term 10 
- 

(A 13) 

By adding all of the derived terms defined by (A5)-(A13), we obtain the following 

V 2  

4 
D, = vA,e = -AXAX- - v2Ax(Atuiu:)0. 

form of the dissipation equation: 

a q 2  a - v a  a -  
- Ax- - V-(ArUiU:)o -I- -Uk-Axq2 - Vuk-(AtUiUi)o = 
4 at at 4 axk axk 

- - A  u.U- + V(ArUkUi)o- + V ( A ~ U ~ U ; ) O -  - 
V a u, - au, - au, v a2q2 auk 
2 x r k  axk d X k  axk 2aXkaXl ax, 

a 2  - auk a - a 2  ui + 2v (-uiu:) - - V-UiUk ~ a2ui + v  (&%) - 
a t k a t l  0 ax, 8x1 a X k a X l  0 axkaxl 

v a  - 
2 axk 

Ax- + - - [(AtUiUkU:)o + (A~u~u;u:)o]  

v a  v a  - 
Axuip + - - [(ArPu:)o 2p ax, 
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(A 14) 
V 2  

4 
Equation (A14) is composed of the terms that are included in (4.4) and higher-order 

terms. The higher-order terms are directly related to the equation for q2. To illustrate 
this point further, we first contract (2.3) to obtain 

+ v2AX(A@$)o - ~ V ~ ( A ~ A $ $ ) ~  + -AxAxi&i& - v2AX(At$)o 

aui a m  2 d p  au, au, a42 aq2 
at axk axk axk p ax, axk axk 

+ -ui- + 2v-- - vAxq2 = 0. (A 15) 

By applying the Laplace operator Ax to (A15) and multiplying the resulting equation 
by v/4,  we obtain 

- + Uk- + 2 m -  + ___ 

a q 2  vauk a q 2  a v a q 2  am a2ui 
4 at 2 axl axlaxk 4 axk 4 axk ax, axkaxl 
- Ax- + + -uk-Axq + --Axuk + V-- 

V au, v a v a  
2 axk 2 axk 4 axk 
v a  v 2  aui au, v2 

2p ax, 2 axk axk 4 

+ - ( A x m ) -  + -%---AxUi + --Ax- 

(A 16) + --Ax- + -Ax-- - - A x A x a  = 0. 

Introducing the transformation 

- 
(A 17) 

v2 au, au, v2 V 2  
-Ax-- = -AxAxi&i& - - A x ( A t ~ i ~ i ) o ,  
2 axk axk 8 2 

(A16) reduces to the form 

v a42 v auk a Z q 2  v a a q 2  am a2ui 

4 at 2 axl axlaxk 4 axk 4 axk ax[ axkaxl 
- Ax- + + -uk-Axq2 + --Axuk + V-- 

V au, v a v a  + -(Ax%)- + -%-AxUi + --Ax= 
2 ax& 2 axk 4 ax/( 
v a  V 2  V 2  - V 2  

2p ax,  8 2 4 (A 18) + --Ax@ + -AXAX- - -A,(Acuiui)o - -AXAX- = 0. 

Subtracting (A18) from (A14), we obtain 

a -  a -  - aui - au, 
at axk ax& Oaxk 

V -  au, v aq2 a - a2ui a 2  ui 
- V-(AtUiUi)o - VUk-(AtUiUi)o - V(AtUkUi)O- - V(AcU.U') ' - 

- -jUiUkAx- - --Axuk + V -ukui - - 

- 2v ( -uiu:) - - - [(AtUiUkUi)O + ( A t u i u ; ~ ; ) ~ ]  

ax& 4axk (at1 ) o  a X k a X l  

a 2  - auk a - - 
a < l a < k  0 3x1 2axk 

v a  
[ ( A t i a o  + (Atuip')Ol 

- li. P [ ( - ( & A t % ) j  + ;A , (A ta )o  + 2v2(AcAta )0  = 0. (A 19) 

The deduced result is identical with (4.4), which defines the homogeneous part 
of the turbulent dissipation rate. It is obvious that there is no reason why we 
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should keep the higher-order terms that appear in (A14). The treatment of the 
dissipation correlations utilizing the two-point correlation technique is an elegant 
way of eliminating the shortcomings mentioned above. 
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